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Abstract 
Previous research on multiplicative reasoning has shown that 
for whole numbers, understanding of division is intimately 
linked to multiplication, as retrieval of division facts is often 
accomplished through reverse multiplication.  We recently 
extended this research to rational numbers, and found that 
inverse multiplication problems can serve as primes for one 
another  (e.g., a × b/a  = a primes b × a/b = b) when the 
second multiplier is expressed as a fraction, but not when it is 
expressed as a decimal.  In the current paper we propose a 
process model of how such relational priming takes place, and 
report two experiments that test the limits of this priming 
effect.  The first varies the format of the equations as fractions 
or a total division equation, and shows that priming is only 
observed using the fraction format; the second varies the 
multiplicative complexity of the factors in the equations, and 
shows that priming requires a common factor linking the 
successive problems. 

Keywords: multiplicative reasoning; relational priming; 
number concepts; fractions and decimals; mathematics 
education 

Relational and Multiplicative Reasoning 
To understand mathematics is to grasp a system of formal 
relations among numbers and numerical operations. By the 
time children finish elementary school, they have been 
exposed to numerous fundamental relations involving both 
whole numbers and rational numbers (fractions and 
decimals). They are taught, for example, that addition and 
subtraction are inverse operations, as are multiplication and 
division (Nunes & Bryant, 1996; Bisanz & LeFevre, 1990); 
and that common factors connect multiplication and 
division (e.g., 4 is a common factor of 8 and 12 because 4 
divides evenly into each, which in turn implies that 4 can be 
multiplied by some whole number to yield either 8 or 12). 
When rational numbers are introduced, children also are 
taught that fractions—the first type of number they 
encounter with a complex internal structure, a/b—are 
intimately related to division. For example, the fraction 2/3 
stands for the quantity obtained by dividing 2 by 3; and the 
fraction 4/6 is equivalent to 2/3 because the numerator and 
denominator of the former (4 and 6, respectively) share a 
common factor of 2, and hence can be divided to reduce 4/6 
to 2/3. 

In the process of learning about such numerical relations, 
students are typically drilled on arithmetic facts. The term 
“fact” is perhaps misleading, as it suggests a list of arbitrary 
pieces of information. However, the successful students are 
likely to learn that these facts are far from arbitrary. For 
example, the standard multiplication table is not just a list of 
associated numbers; rather, it is a relational database in 
which the position of a number conveys its status as a factor 
or product relative to other numbers, and the direction of 
mappings between numbers reflects the symmetry of the 
multiplication and division operators. Any specific 
multiplication fact, such as 2 × 3 = 6, can potentially be 
accessed from any of the constituent role bindings (i.e., 2 or 
3 as factors, 6 as the product), thereby exhibiting the 
property of omnidirectional access characteristic of 
relational structures (Halford, Wilson & Philips, 1998; 
Halford, Wilson, Andrews, & Phillips, 2014). Thus to truly 
learn the multiplication table is to acquire a multiplicative 
schema that specifies interrelated factors and products and 
also the dependencies between multiplication and division 
(see Campbell, 1999; Campbell & Alberts, 2009). 

Despite the clear importance of relational understanding 
in mathematics, relatively little is known about the extent to 
which students acquire a multiplicative schema that can be 
flexibly used to solve math problems. Particularly for 
problems that go beyond simple whole numbers to include 
fractions and decimals, there is evidence of great individual 
differences. For example, Siegler and Lortie-Forgues (in 
press) found that pre-service teachers and middle-school 
students performed at below-chance levels on estimation 
problems involving multiplication and division of fractions 
smaller than 1 (e.g., is 31/56 × 17/42 > 31/56?), whereas 
math and science students from a selective university were 
consistently correct on such items. Notably, pre-service 
teachers and middle-school students who correctly executed 
fraction arithmetic procedures and exhibited accurate 
knowledge of fraction magnitudes were still unable to solve 
this type of multiplicative estimation problem, suggesting 
their difficulty was conceptual in nature. 

Relational Priming with Fractions 
Previous research has tested the extent to which adults have 
access to reciprocal relations when performing 
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multiplication with rational numbers.  DeWolf and Holyoak  
(2014) gave college students at a selective university a 
series of multiplication problems that students’ had to 
decide were either “true” (correct) or “false” (incorrect).  
Half of the students performed the task with problems that 
had the format a × b/c = d, and the other half had problems 
where the b/c term was expressed as an equivalent decimal.  
Importantly, a quarter of the trials were set up such that two 
successive problems were inversely related to one another 
(the other three quarters of the trials were foil problems 
intended to obscure the relationships between successive 
problems).  For example, the first trial in a pair (the prime) 
might be 3 × 8/6 = 4, and the following problem (the target) 
might be 4 × 6/8 = 3.  Because 3 × 8/6 = 4 is true, and the 
two problems are exactly the inverse of one another, the 
target problem must also be true.  DeWolf and Holyoak 
found that participants showed a significant priming effect, 
such that the target problem was significantly faster than the 
prime problem (with appropriate counterbalancing to 
control for basic problem difficulty).  However, no such 
priming effect was found when the same exact problems 
were presented with decimals rather than fractions as the 
second multiplier.  In addition, performance on all fraction 
trials was significantly faster and more accurate than on 
trials with decimals.  These findings suggest that (1) 
multiplicative reasoning with fractions and decimals is 
fundamentally different, affording different strategies and 
processes even when the quantities are matched in 
magnitude, and (2) college students are sensitive to inverse 
relations between problems expressed as fractions. We have 
developed a process model of multiplicative reasoning with 
fractions to account for this priming effect.  
 

Model of Activation for Primed Pairs 
People may employ various strategies to evaluate the 
correctness of a simple multiplication problem. For 
problems with fractions, perhaps the most obvious strategy 
is to evaluate the problem in a manner similar to a whole-
numbers division problem.  For example, 3 × 8/6 = 4 could 
be evaluated by first multiplying 3 × 8 and then dividing 
that product by 6.  This strategy will work on any fraction 
multiplication problem, even if the equation itself is false.  
However, a limitation of this strategy is that multiplying the 
whole number and the fraction numerator may lead to a very 
large product. 

For problems in which common factors are available, 
people may instead solve problems using fractions using a 
simplification strategy that minimizes the calculations 
required.  One potential simplification strategy would be to 
simplify the fraction 8/6 to 4/3.  The simplified equation is 
now 3 × 4/3, which reduces to 4.  Another possible 
simplification strategy would be to reduce the whole 
number multiplier and the denominator of the fraction, 
(essentially, 3 × 1/6 = 1/2), which would result in 8/2, and 
note that 8 divided by 2 is simply 4. One consequence of 
such simplification strategies is that common factor 

relations between the whole number, fraction numerator, 
and fraction denominator are activated.   

It is important to note that in the fraction problems used 
by DeWolf and Holyoak (2014) and in the experiments 
reported here, the relevant pairs of prime and target 
problems could always be solved by at least one of the 
simplification strategies, because common factors linked 
either the whole number and denominator, the numerator 
and denominator, or both. The false problems (half of the 
total set) could not be simplified in such a way (e.g., a false 
problem might be 8 × 9/6 = 9 which does not simplify to 9). 

We propose that in the process of evaluating the prime 
(i.e., the first trial in a successive primed pair), participants 
will typically activate the common factor between the whole 
number and denominator, or the numerator and 
denominator, in order to simplify the problem (see, left 
panel).  Hence, if the prime were 4 × 6/8 = 3, then the 
numbers 4, 6, 8, and 3 would provide the initial sources of 
activation. In Figure 1, the arrows connecting numbers 
represent the relation “is a factor of”. These arrows are 
depicted as unidirectional to reflect the asymmetry of the 
relational roles (factor and product), but we assume 
activation can spread in both directions (see Campbell, 
1999). We assume for simplicity that the two nearest factors 
and products of a number are activated (i.e., those numbers 
depicted in the example networks). (Additional 
factors/products may also be activated, but two are 
sufficient for the problems used in our experiments.) In 
solving the prime problem by simplification, relevant factor 
relations become highlighted, while irrelevant ones are 
deactivated. Thus in solving the prime problem (bottom left 
in Figure 2), the fact that 3 is a factor of 6, and/or 4 is a 
factor of 8, would become highly active.  If the target trial in 
a successive primed pair (Figure 1, right panel) is the 
inverse problem 3 X 8/6 = 4, these same factor relations are 
precisely those necessary for simplification. Hence, the 
process of activating relevant factor/product relations will 
have a “head start” in the target problem, relative to the 
prime problem. Accordingly, priming is expected in that the 
target problem will be solved more quickly than the prime 
(where the order of the prime and target are counterbalanced 
to control for other sources of problem difficulty (i.e., a 
problem would appear as the prime for one participant but 
as the target for another). 

This process model suggests that when a participant 
evaluates the target problem, two components determine if 
priming will be obtained. First, by definition, the connection 
between the prime and target trials depends on the inverse 
relation between them.  However, in order for this relation 
to actually facilitate solution of the target trial, there must at 
least be some implicit recognition of how the two problems 
relate to one another. The fact that no priming is found 
when decimals are used in place of fractions (DeWolf & 
Holyoak, 2014) suggests that when the structural parallel 
between the prime and target is not apparent (e.g., because 
the reciprocals are obscured when expressed as decimals), 
there will be no facilitation of the target problem. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The second component that contributes to successful 

priming is that the same common factor relations can be 
activated in the prime as in the target.  For example, in the 
prime trial shown in Figure 1, the fact that 3 is a factor of 6 
and/or 4 is a factor of 8 are activated in the evaluation of 
both the prime and target problems.  

Empirical Tests of the Model 
In order to evaluate whether these two components are both 
necessary for successful priming, we conducted two 
experiments to test these hypotheses. Experiment 1 tested 
whether the structural equivalence afforded by the fractions 
is a necessary component for priming.  Primarily, the 
advantage of the fraction is that it highlights the central term 
that is being inverted when forming the inverse relation.  
Another format, which is equivalent in magnitude but 
differs slightly in meaning, is the division format shown in 
Figure 2.  In the division format, the relevant reciprocal 
relation is obscured, making it harder to recognize the 
structural similarity across problems. Experiment 1 assessed 
whether the division format will yield a priming effect 
similar to that found for the fraction format in the study of 
DeWolf and Holyoak (2014).  Our process model predicts 
that the priming effect will be reduced or even eliminated 
when problems are presented in a division format because 
the division format does not highlight the structural 
equivalence between problems. 

The sets of stimuli tested by DeWolf and Holyoak (2014) 
and Experiment 1 here were not suitable for testing the 
“common factor” hypothesis because they all included 
common factors.  Therefore, Experiment 2 was designed to 
test whether common factor relations are indeed necessary 
for successful priming, as predicted by our process model.  
We created a set of problems for which there was no 
perceptual match between the whole numbers and the  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

fraction components (e.g., 8 × 6/4 = 12; 12 × 2/3 = 8).  
These two problems still maintain the inverse relation 
because 6/4 and 2/3 are reciprocally related to one another 
(see Figure 4, top).  In addition, the components of the 
fractions maintained the “is a factor” relation (3 is a factor 
of 6 and 2 is a factor of 4; see Figure 4, bottom). We also 
included a subset of problems that are reciprocally related 
but for which the components do not share the “is a factor” 
relation (e.g., 2 × 21/6 = 7; 7 × 4/14 = 2).  Our process 
model predicts that priming will be obtained when common 
factor relations are present, but not otherwise. 

Experiment 1 
Experiment 1 assessed whether the fraction format in 
particular affords recognition of the structural equivalence 
across inverse problems, or if relational priming can be 
achieved with equivalent problems written in a division 
format (see Figure 2). 

Method 
Participants A total of 74 undergraduate students (mean 
age = 21.2 ; females = 59) from the University of California, 
Los Angeles (UCLA) participated in the study for course 
credit.   
 
Design and Materials There were two conditions: fraction 
format and division format. The stimuli and materials were 
adapted from the “non-matching fractions” condition of 
Experiment 2 reported by DeWolf and Holyoak (2014).  
Equations were shown either in fraction format or division 
format (see Figure 2), but were otherwise identical.  Half of 
the participants were assigned to the fraction format 
condition and half were assigned to the division format 
condition. 
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Figure 1. Process model for activation of common factors when solving prime and target 
problems. 



 
 

 
 

 
 

 
 
Figure 2. Examples of fraction and division format used in 
Experiment 1. 
 

There were a total of 240 trials, with 60 of the trials 
designed to be true (correct) primed pairs, where the prime 
had the format exemplified by 3 × 8/6 = 4 and the target was 
the inverse equation, exemplified by 4 × 6/8 = 3.  The other 
180 trials consisted of 60 “false” primed trials and 120 foil 
trials.  The false primed pairs were similar to the true 
primed pairs in that there was a superficial similarity 
between successive problems, but the answers for each trials 
was “false” instead of “true”.  An example of false primed 
pairs is 7 × 10/4 = 8 followed by 8 × 4/10 = 7.  The 
remaining foil trials were not related to each other in any 
specific way.  These were designed to vary the order of 
trials (true/false, false/true, true/true, false/false) and to 
obscure the structural similarity between the trials in primed 
pairs. DeWolf and Holyoak (2014) found no evidence of 
priming for either false primed pairs or foil problems. 

Half of the 240 trials were true and half of the trials were 
false.  Except for the pairing involved in primed trials, 
problems were shown in random order for every participant. 
 

Procedure The study was administered using Superlab 4.5 
(Cedrus Corp., 2004), which was used to collect accuracy 
and response time data.  Participants were told that they 
would see multiplication (or division) problems.  They were 
told to press the “a” key if the problem was true or the “l” 
key if the problem was false. Participants were told that the 
answers were shown rounded to the nearest whole number.  
As we were particularly interested in potentially subtle 
response time differences, participants were instructed to 
respond as quickly as possible while maintaining high 
accuracy.  They were first given four practice trials that used 
only whole numbers.  After the practice trials, they were 
given a chance to ask questions before starting the test trials. 

Results and Discussion 
Accuracy Across all trials (including prime, target and foil 
trials), there was no difference in accuracy for the fraction 
condition and the division condition (90% vs. 90%; t(72) = 
.007; p = .994).  There was also no evidence of priming for 
true prime-target pairs based on the accuracy measure, 
either for the fraction condition (prime: 88% target: 89%; 
t(36) =1.74, p = .09) or the division condition (prime: 86% 
target: 87%; t(36) = 1.85, p = .07).   
 

 
 
Figure 3. Mean response times for the true prime and target 
trials by format condition (Experiment 1). 
 
 

Response Time Across all trials, participants responded 
more slowly to fraction-format trials than division-format 
trials (3.57 s vs. 2.79 s; t(72) = 3.65, p = .001).  Figure 3 
shows the average response times for the true prime and 
target trials by format condition. 2 (Fraction vs. Division) X 
2 (Prime vs. Target) ANOVA revealed a significant 
interaction (F(1, 72) = 4.34, p = .04). There was a 
significant priming effect for the fraction-format trials (3.92 
vs. 3.45, F(1, 72) = 7.82, p = .007), but no significant 
priming effect for division-format trials (3.26 vs. 3.28, F(1, 
72) = .02, p = .88). 

Overall, the results of Experiment 1 indicate that priming 
between inverse problems depends on the fraction format, 
which highlights the reciprocal relation between the two 
inverse problems. When equivalent problems were 
presented in division format, no facilitation from prime to 
target was obtained for the true prime-target pairs.  

An unanticipated finding was the overall advantage for 
the division format over the fraction format in response 
time. Although the division format does not yield 
facilitation that depends on recognizing similarities across 
problems, it may facilitate activation of common factors 
within each individual problem.  Each format may afford a 
different order of operations. The division format may 
facilitate multiple solution paths (e.g., Landy & Goldstone, 
2010), making it easier to simplify either of the numerator 
numbers with the denominator. 

Experiment 2 

The goal of Experiment 2 was to test the second hypothesis 
generated by the process model: that inverse priming 
requires activation of common-factor relations across the 
prime and target problems.   

Method 
Participants Participants were 37 UCLA undergraduates 
(mean age = 20; 24 females) who received course credit for 
participating. 
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Figure 4: Examples of primed pairs used in Experiment 2.  
Double-Mismatch pairs share common-factor relations, 
whereas Double-Mismatch, No CF pairs do not. 

 

Design, Materials, and Procedure A single within-subjects 
variable was tested, using problems presented with the 
fraction format.  The set of stimuli was identical to the 
fraction condition of Experiment 1 except that the 60 
primed trials comprised two subsets of prime pairs: 
“Double-Mismatch” trials and “Double-Mismatch, no CF 
(common factor)” trials.  In all Double-Mismatch problems, 
the whole numbers within a single problem do not match the 
fraction components, and the fraction components between 
the two problems do not match.  This type of problem 
enables tight control of perceptual similarities between the 
prime and target problems. The top panel of Figure 4 shows 
an example of a Double-Mismatch primed pair. The two 
problems are related in that 6/4 is a reciprocal of 2/3.  They 
also share common factor relationships because 3 is a factor 
of 6 and 2 is a factor of 4. By contrast, the bottom panel of 
Figure 4 shows an example of a Double-Mismatch, no CF 
primed pair.  The two problems are related by a reciprocal, 
but not by common factors.  In Figure 4, 21/6 and 4/14 are 
reciprocals (21/6 = 7/2, 4/14 = 2/7).  However, in the 2 × 
21/6 = 7 equation, the “is a factor” relations that are 
activated is “7 is a factor of 21” and “2 is a factor of 6”.  In 
the 7 × 4/14 = 2 equation, the “is a factor” relations that are 
activated do not match- instead they are: “2 is a factor of 4” 
and “7 is a factor of 14”. 

 
Figure 5. Average response times for the prime and target 
true primed trials for Double-Mismatch and Double-
Mismatch, no CF pairs (Experiment 2). 

 
There were 42 Double-Mismatch trials and 18 Double-

Mismatch, no CF trials. The number of possible problems of 
the latter type is limited (given the constraint of avoiding 
problems including large numbers). The remaining 180 
trials were the same foil trials used in Experiment 1. The 
procedure was also identical to that of Experiment 1. 

Results and Discussion 
Accuracy Average accuracy across participants on all trials 
(including true prime, target and foils) was 87%.   There 
was no difference in accuracy across all trials on the 
Double-Mismatch and Double-Mismatch, no CF trials (79% 
vs. 80%, t(36) = .68, p = .50).  Among the true primed trials, 
there was also no evidence of priming based on accuracy 
measure for either the Double-Mismatch pairs (79% vs. 
78%, t(36) = 1.12, p = .27) or the Double-Mismatch, no CF 
pairs (80% vs. 80%, t(36) = .41, p = .68). 
 
Response Time Mean response time across participants on 
all trials was 3.83 s.  Response times for the Double-
Mismatch true prime-target trials were significantly faster 
than for the Double-Mismatch, no CF true prime-target 
trials (4.96 s vs. 5.75 s; t(36) = 2.37, p = .02).  Figure 5 
shows the average response times for prime and target trials 
in the Double-Mismatch and Double-Mismatch, no CF 
prime conditions.  A significant priming effect was obtained 
for the Double-Mismatch trials (5.21 s vs. 4.69 s, t(36) = 
2.1, p = .04), but not for the Double-Mismatch, no CF trials 
(5.56 s vs. 5.94 s, t(36) = .41).   

These response time results support the prediction of our 
process model, in that a necessary condition for priming is 
that common factor relations must link the prime and target 
trials.  The Double-Mismatch trials yielded clear inverse 
priming even though they lack perceptual similarity. In 
contrast, the Double-Mismatch, no CF trials, which share a 
reciprocal relation but not common factors, did not yield 
priming.  
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Discussion 
The results of these two experiments support hypotheses 
derived from a process model of how activation spreads 
among common factors during fraction and whole number 
multiplication.  The fraction format seems to highlight or 
isolate the inverse relationship across related problems, 
thereby facilitating performance on the target trial.  The 
results of Experiment 1 indicate that the fraction format 
highlights the relevant inverse relationship, resulting in 
priming, whereas an equivalent division format does not. 
The results of Experiment 2 reveal that the fraction format 
with a shared reciprocal is not sufficient to create the 
necessary structural similarity across problems. In addition, 
an “is a factor” relation that connects the prime and target 
problems must be activated in order for priming to occur. 
Hence Double-Mismatch, no CF problems, which share a 
reciprocal relation but not a common factor (e.g., the 
reciprocals 21/6 and 4/14) do not yield priming. 

The process model we propose here has important 
implications for how multiplication with fractions is 
performed.  Previous research has examined multiplicative 
reasoning with whole numbers but not with fractions. Our 
model demonstrates that fractions can be incorporated into a 
multiplicative schema that connects them with whole 
numbers.  College students seem to prefer to analyze the 
component parts of fractions, and their relations to whole-
number components in the problem, rather than considering 
the fraction as a single unit. 

The process model also explains why the fraction format 
affords a flexible set of strategies for solving simple 
multiplication and division problems.  When solvers have a 
deep understanding of how fractions and whole numbers are 
embedded within a multiplicative schema, they are able to 
flexibly simplify fraction multiplication problems based on 
their network of common-factor relations. 

The present findings thus add to other evidence of major 
differences in the procedural and conceptual knowledge 
associated with different types of rational numbers. 
Although one might expect that people would solve a 
multiplication task with fractions by simply estimating the 
magnitude of the fraction and hence the resulting product, 
this was not the case in our study. Decimals represent one-
dimensional magnitudes, whereas fractions represent two-
dimensional relations; hence adults access magnitudes more 
easily for decimals than for equivalent fractions (DeWolf, 
Grounds, Bassok & Holyoak, 2014). Accordingly, 
multiplication is much more likely to be based on 
magnitude estimation for problems involving decimals 
rather than fractions. At the same time, the relational 
structure of fractions is advantageous for reasoning tasks 
that depend on relations between certain quantities, such as 
that between the cardinality of a subset and the full set 
(DeWolf, Bassok & Holyoak, 2015; Rapp, Bassok, DeWolf 
& Holyoak, 2015). In general, the different formats for 
rational numbers each provide unique affordances for 
performing different mathematical tasks. 
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